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ABSTRACT

Recent disclosures on subwavelength plasmonic crystals, like the potential excitation of a pair of coexisting wave-
fields with opposite refraction, only can be understood by considering two dispersion branches with completely
different features that characterize the metamaterial. One branch gives elliptic-like dispersion and the other
provides hyperbolic-like dispersion. However the effective medium approximation, also known as Rytov approx-
imation, is not consistent with both curves simultaneously. We follow an approach leading to a single curve that
allows a complete description of both diffraction behaviors concurrently. Importantly only two parameters of the
closed curve, together with the lattice period, fulfill such a complete picture. In addition, our semi-analytical
approach may include more general situations straightforwardly.
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1. INTRODUCTION

Metal-dielectric superlattices are versatile metamaterials with unique dispersion properties. Recent advances in
the fabrication of nanolayered devices have made possible to surpass the limit of the metal skin depth in the
visible regime.1 By means of resonant tunneling, alternate metal-dielectric strata become practically transparent.
Furthermore, negative permittivity of metals demonstrates negative refraction for p-polarized waves.2

Modal coupling in adjacent nanomembranes gives rise to novel nonlocal effects. Recently it has been demon-
strated that a single beam traveling in a homogeneous dielectric medium that impinges on a metallodielectric
lattice is able to excite a couple of wavefields with opposite refraction.3 This can be understood by considering
independent dispersion curves for each beam diffracted in the metamaterial. However Rytov approximation,4

later followed by Yeh,5 is not consistent with both curves simultaneously.

In this contribution we follow an approach leading to a single elliptic curve that allows a complete description
of both refractive behaviors concurrently. Importantly, only two parameters of the closed curve (the semi-axes of
the resultant ellipse) together with the lattice period fulfill a complete picture for such an indefinite birefringence.
For that purpose, wideness of the ellipse shall exceed that of the Brillouin zone. Additionally we analyze the
inherent erroneous conduct of our approach in the vicinity of band edges. Finally our semi-analytical approach is
extended to more general situations straightforwardly, including when a single plasmonic band comes into play.

2. DISPERSION IN PLANAR 1D SUBWAVELENGTH PLASMONIC CRYSTALS

The simplest metamaterial based on one-dimensional plasmonic crystals is that shown in Fig. 1. It consists of
alternating planar strata of dielectric with positive dispersionless permittivity εd and metal with negative relative
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Figure 1. Geometry of the bilayer periodic structure; εm stands for permittivity in the metal, and εd for the dielectric.

dielectric constant εm in the frequency range of interest, that is visible and infrared frequencies. We use the
simple Drude model for metal permittivity,

εm(ω) = 1− ω2
p

ω2
, (1)

where ωp is the plasma frequency of the metal. Fig. 1 depicts a periodic structure of bilayer unit cells as
considered here for the subwavelength plasmonic crystal (SPC).

Let us write the thickness of a metal stratum as dm, while the dielectric stratum thickness is dd, making a
total thickness of a bilayer unit cell of L = dm + dd. All of these values are constant throughout the multilayer.
We assume that the thickness is much smaller than the operating wavelength, L � λ. For convenience, the
spatial dimensions will be normalized to the metal skin depth, c/ωp, and wavenumbers to kp = ωp/c, where c is
the speed of light in vacuum. Finally, we proceed by defining a synthetic parameter δ = dm/L, the filling factor
of the multilayer, as the ratio of the metal stratum thickness to the total bilayer thickness.

Three-dimensional electromagnetic waves can propagate through the multilayer SPC structure shown in
Fig. 1. The electromagnetic fields can be represented in the form

A = uAq(y) exp(iqy) exp[i(kxx+ kzz − ωt)], (2)

where A denotes either electric field E, in the case of TE polarization, or magnetic induction B, in the case of TM
polarization. Therefore, Bloch wavevector q = qy describes propagation perpendicular to the multilayer surface
along the y-direction, and plasmonic wavevector k = (kx, kz) describes propagation along the metal-dielectric
interfaces. In this case, the unitary vector u = (ux, uz) is orthogonal to k.

For the case of an infinite multilayer one may write the well-known Floquet-Bloch dispersion relation, obtained
as the eigenvalue solution for the transfer matrix,6

cos(qL) = cos(kmdm) cos(kddd)− 1

2

(
αs,p +

1

αs,p

)
sin(kmdm) sin(kddd), (3)

where

αs = km/kd, (4)

αp = kmεd/kdεm, (5)
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Figure 2. Dispersion of Ag-GaAs nanomembrane multilayer with dm = 0.5 k−1
p and two different values of dd: (a)

dd = 2.5 k−1
p and (b) dd = 10 k−1

p . Dashed red line is the light line; areas in magenta represent allowed TM bands; zones
in blue are allowed TE bands; solid red lines are TM band-edges crossing into the bandgap.

for the TE and TM polarization, respectively, and

km,d =
√
k20εm,d − k2t . (6)

Finally, kt =
√
k2x + k2z denotes the transverse spatial frequency. Generally, when the right-hand side of Eq. (3)

is lower than unity, we have allowed bands, while the opposite case defines the forbidden band (electromagnetic
bandgap). Therefore, the band edges are defined by cos(qL) = ±1. For subwavelength dimensions of the unit
cell, there are two solutions for each sign, revealing four edge lines. Two of the edge lines may cross each other,
depending on the value of filling factor δ as well as on the permittivity of the dielectric strata εd.

We performed exact calculations of the dispersion of planar SPCs for different widths dd of the dielectric
layers. Figure 2 shows the dispersion for a SPC made of Ag (ωp = 12.9 fs−1) and GaAs (εd = 12.4). In this
configuration both TE and TM modes are supported. The metal filling factor was chosen within an interval
ranging from δ = 0.048 to δ = 0.167. It can be seen that two TM allowed bands (magenta shaded areas) appear
with a gap between them and two gaps outside (not shaded). The allowed bands are limited by band-edge lines.
The inner band edges (red lines) are defined by the condition cos(qL) = +1, while the two outer edges are
determined by cos(qL) = −1.

It is worth noting that zero group velocity (i.e. standing light) appears for both TE- and TM-polarized modes
in the upper band for kt = 0. Such slow states of light seem to correspond to Tamm plasmon polaritons.7

3. THE EFFECTIVE MEDIUM APPROXIMATION

When the SPC is infinite, and when the wavelength of the radiation is much longer than the size of the unit cell,
it is usually assumed that the Rytov4 or effective-medium approximation (EMA) is valid, and the metamaterial
can be represented by a diagonal permittivity tensor ε̄ = ε⊥(xx + zz) + ε||yy, where

ε⊥ =
εmdm + εddd

L
, (7)

ε|| =
εmεdL

εmdd + εddm
. (8)

The indices ⊥, || indicate direction normal (x and z-directions) and parallel (y-direction) to the optical axes,
respectively. Incidentally, implementation of metallic layers leads to positive birefringence, i.e. ε|| > ε⊥, and in

Proc. of SPIE Vol. 8423  84231Z-3

Downloaded from SPIE Digital Library on 20 Jun 2012 to 147.156.26.41. Terms of Use:  http://spiedl.org/terms



(b1)

10-10

10

-10

k t 
/k 0

ky /k0

(b2)

10-10

10

-10
k t 

/k 0
ky /k0

(b3 )

10-10

10

-10

k t 
/k 0

ky /k0

(a2)

-15 15
-15

15

k t 
/k 0

ky /k0

(a3)

-15 15
-15

15

k t 
/k 0

ky /k0

(a1)

-15 15
-15

15

k t 
/k 0

ky /k0

TM
TE

Figure 3. Equifrequency dispersion curves for an Ag-GaAs multilayer: λ = 1.55μm; εm = −116; εd = 12.4. In all cases
dm = 12nm. (1) Exact solutions; blue TM; magenta TE polarization; (2) QEMA approach; (3) conventional EMA
theory; (a) dd = 90nm; (b) dd = 150nm.

dielectric-dielectric superlattices birefringence is always negative.8 Then, general dispersion relation reduces to
a pair of equations for the TE-polarized and TM-polarized modes,

k2x + k2y + k2z = k20ε⊥, (9)(
k2x + k2z

) ε⊥
ε||

+ k2y = k20ε⊥. (10)

Here, k0 = ω/c = 2π/λ represents wavenumber in free space, while kx, ky, and kz are the wavevector components
in the (effective) media. Therefore ky substitutes the pseudofrequency q used in Eq. (3). Since in the optical range
of frequencies εm < 0, and εd > 0, it is clear that both ε⊥ and ε|| can change sign depending on layer thicknesses
dm and dd. In the k-space, equation (9) represents a sphere, while equation (10) represents an ellipsoid, provided
both ε⊥ and ε|| are positive. On the contrary, if ε⊥/ε|| is negative, Eq. (10) gives a hyperboloid of revolution.

Equations (9)-(10) are obtained from Eq. (3) by simple Taylor expansion by assuming kmdm � 1, kddd � 1,
as well as qL � 1. As can be easily seen, Eq. (3) is periodic in q, while Eqs. (9)-(10) for the EMA are not. To
avoid this, ky in (9)-(10) can be replaced by (2/L) sin(kyL/2) to obtain quasi-effective medium approximation
(QEMA).7

In order to get insight into validity of both EMA and QEMA theory we have solved numerically Eqs. (3), and
compared the results with the corresponding approximations. We present some results in Fig. 3. As can be seen,
EMA theory can be used in a limited range of parameters, and for a very limited range of kt and ky. QEMA is
much better, but it does not reproduce the upper band in kt for the TM-polarization. Besides the well known
birefringence (circles for the TE- and ellipses for the TM-polarization), there exists the second TM-band. Thus,
in a metal-dielectric superlattice, for sufficiently thin metallic layers, as well as for thin enough unit cells, we
have two extraordinary TM-polarized modes (and one ordinary TE-polarized mode). One of these extraordinary
p-polarized modes is represented by Eq. (10) using positive ε⊥ and ε||; also diffraction of the other mode could
be approximated by the same equation (10) but using different permittivities provided they have a different sign.
In this case we might speak of dual hyperbolic-elliptic media.

4. COMPLETE ELLIPTIC DISPERSION CURVE

A major problem in the description of the spatial dispersion curves for TM waves arises when the EMA provides
positive values of ε⊥ and ε|| leading to an ellipsoidal curve; in this case the plasmonic band is completely missing.

Proc. of SPIE Vol. 8423  84231Z-4

Downloaded from SPIE Digital Library on 20 Jun 2012 to 147.156.26.41. Terms of Use:  http://spiedl.org/terms



-15 15
-10

10

(a) (b)

k t 
/k 0

ky /k0

k t 
/k 0

ky /k0

EXACT
APPROXIMATION

-10 10

-6

6

Figure 4. Equifrequency dispersion curves for an Ag-GaAs multilayer: λ = 1.55μm; εm = −116; εd = 12.4. In all cases
dm = 12nm. (a) dd = 90nm and (b) dd = 150nm. Exact solutions from Eq. (3) is drawn in dashed blue, and the
approximation followed from Eq. (11) is in solid red.

In order to recover the high-frequency plasmonic band, we propose to use a simple curve-fitting method. Note
that the maximum value of kt associated with the plasmonic band is located at ky = (2m+1)π/L, where m is an
integer. Therefore we will include a set of data involving points from solutions of the exact dispersion equation
(3) placed in the vicinity of the Brillouin boundaries. To find a formula that best fits this given set of data, for
simplicity we propose a new ellipsoid of the form

(
k2x + k2z

) ε̃⊥
ε̃||

+

[
ky − (2m+ 1)π

L

]2
= k20 ε̃⊥. (11)

As a consequence, the maximum value of kt is given by k0
√
ε̃||.

For convenience, the data set is better fitted to the Taylor expansion of Eq. (11) around ky = (2m+ 1)π/L.

Up to a second order, we write kt = A − B [ky − (2m+ 1)π/L]
2
, where A = k0

√
ε̃|| and B = (2k0ε̃⊥)−1

√
ε̃||.

Once we determine A and B from the parabolic-curve fitting, we may derive the semi-axes, k0
√
ε̃|| and k0

√
ε̃⊥,

characterizing the off-center ellipsoids given in Eq. (11).

Figure 4 shows the dispersion curve for TM waves computed from the exact equation (3), for the two cases
analyzed in Fig. 3. Also we include the ellipsoids derived from Eq. (11) after the corresponding curve fitting. We
observe that the proposed ellipsoids provide accurate results except in the vicinities of ky = 0 (more generally
around ky = 2mπ/L). In this region, two neighboring ellipsoids cut at a certain value of kt, what happens merely
if
√
ε̃⊥ > π/k0L. From physical fundamentals we expect that, in this case, Bragg reflections comes into action

and consequently bandgaps emerge. Note that Eq. (11) itself does not provide an accurate spatial dispertion
near the bandgaps but it reveals its presence in a simple way.

In the case that two TM bands are present, it is espected that the value of k0
√
ε̃⊥ were higher than π/L,

as we have mentioned above. In fact we estimate that k0
√
ε̃⊥ = k0

√
ε⊥ + π/L, that is an accurate equation

provided ε⊥ ≥ 0. This equation may be rewritten as

ε̃⊥ =

(√
ε⊥ +

π

k0L

)2

. (12)

This is a relevant result since it can be used to estimate analytically the value of ε̃⊥ instead of employing the
proposed curve fitting.

In Fig. 5(a) we represent the values of ε̃|| and ε̃⊥ that are calculated by the method based on the curve fitting
described above. Those estimates are depicted together with ε|| and ε⊥ provided by Eqs. (7) and (8) from the
EMA, shown in Fig. 5(b). We observe that ε̃|| and ε̃⊥ are always positive parameters. However, ε|| and ε⊥ may
change of sign; in the Figure 5(b) we show a case where only ε⊥ takes either a positive or a negative value. We
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Figure 5. (a) Estimations of ε̃|| and ε̃⊥ from the curve-fitting method for an Ag-GaAs multilayer at λ = 1.55μm. Again
dm = 12nm in all cases. (b) Average permittivities predicted by the EMA and calculated from Eqs. (7) and (8).

point out that some plasmonics metamaterials are of the form such that the EMA estimates an hyperboloidal
dispersion, specifically when ε⊥/ε|| < 0, in opposition of the ellipsoidal dispersion given by our approach, since
ε̃|| > 0 and ε̃⊥ > 0.

5. CONCLUSIONS

We analyzed 3D electromagnetic wave propagation along planar metal-dielectric multilayers, which represent
the simplest subwavelength plasmonic crystals. The dispersion of plasmon wavevectors for various multilayer
geometries is investigated following different approaches. In particular, Rytov’s model of effective medium is
unable to reproduce multiband dispersion associated with TM modes in the great majority of circumstances.
For two-fold bands, one branch of these extraordinary p-polarized modes is represented by using positive ε⊥
and ε||, and the other branch is approached similarly but using different permittivities provided they have an
opposite sign; here this is referred to dual hyperbolic-elliptic media. However the EMA provides the first branch
exclusively. Differently we propose a simple, single equation that, in this aspect, improves the results derived
from the EMA. Spatial dispersion is formulated in terms of a set of off-center ellipsoids, which semi-axes are
given by k0

√
ε̃|| and k0

√
ε̃⊥. Specifically some plasmonics metamaterials are of the form such that the EMA

estimates an hyperboloidal dispersion in opposition of the ellipsoidal dispersion given by our approach.
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